一對一數(shù)學高三補習_學年數(shù)學的全套知識點歸納綜合
等可能基本事件:
若在一次試驗中,每個基本事件發(fā)生的可能性都相同,則稱這些基本事件為等可能基本事件。
縱然是溫習過的內(nèi)容仍須定期牢固,然則溫習的次數(shù)應隨時間的增進而逐步減小,距離也可以逐漸拉長??梢援斕炖喂绦轮R,每周舉行周小結(jié),每月舉行階段性總結(jié),期中、期末舉行周全系統(tǒng)的學期溫習。以下是小編給人人整理的學年數(shù)學的全套知識點歸納綜合,希望人人能夠喜歡!
直線的傾斜角
界說:x軸正向與直線向上偏向之間所成的角叫直線的傾斜角。稀奇地,當直線與x軸平行或重適時,我們劃定它的傾斜角為0度。因此,傾斜角的取值局限是0°≤α<
直線的斜率
①界說:傾斜角不是的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k示意。即。斜率反映直線與軸的傾斜水平。
②過兩點的直線的斜率公式:
注重下面四點:
(那時,公式右邊無意義,直線的斜率不存在,傾斜角為;
(k與PP順序無關;
(以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(求直線的傾斜角可由直線上兩點的坐標先求斜率獲得。
直線方程
點斜式:
直線斜率k,且過點
注重:當直線的斜率為0°時,k=0,直線的方程是y=y當直線的斜率為時,直線的斜率不存在,它的方程不能用點斜式示意.但因l上每一點的橫坐標都即是x以是它的方程是x=x
一、函數(shù)的界說域的常用求法:
分式的分母不即是零;
偶次方根的被開方數(shù)大于即是零;
對數(shù)的真數(shù)大于零;
指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)大于零且不即是
三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/
若是函數(shù)是由現(xiàn)實意義確定的剖析式,應依據(jù)自變量的現(xiàn)實意義確定其取值局限。
二、函數(shù)的剖析式的常用求法:
界說法;
換元法;
待定系數(shù)法;
函數(shù)方程法;
參數(shù)法;
配方式
三、函數(shù)的值域的常用求法:
換元法;
配方式;
判別式法;
幾何法;
圖例
棱柱
,學會高效復習,溫故而知新。 ①制定階段性的復習目標,合理規(guī)劃自己每一天的學習復習任務。什么時候復習什么科目,什么時候做題訓練,什么時候看書背誦,什么時候查缺補漏等等,都一一明確下來。 ②復習的時候,不要長時間的只復習一科,也不要頻繁的更換復習科目。每一個時段的復習都要保證學科的完整性,按計劃復習完一個學科再進行另外一個學科的復習。 ③自己在復習的時候,一定要跟上老師的節(jié)奏,最好就保持同步進行。如果你掌握的很好,可以快于老師的安排,但不能被老師遠遠落下。 ④每一小階段的復習之后,要檢查掌握情況??梢宰约阂粋€人進行:合起書本,回憶一下這一階段都學習復習了哪些知識,哪些知識是已經(jīng)掌握了的,不等式法;
單調(diào)性法;
直接法
四、函數(shù)的最值的常用求法:
配方式;
換元法;
不等式法;
幾何法;
單調(diào)性法
五、函數(shù)單調(diào)性的常用結(jié)論:
若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個區(qū)間上也為增(減)函數(shù)。
若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)。
若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性差異,則f[g(x)]是減函數(shù)。
奇函數(shù)在對稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對稱區(qū)間上的單調(diào)性相反。
常用函數(shù)的單調(diào)性解答:對照巨細、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。
六、函數(shù)奇偶性的常用結(jié)論:
若是一個奇函數(shù)在x=0處有界說,則f(0)=0,若是一個函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不確立)。
兩個奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。
一個奇函數(shù)與一個偶函數(shù)的積(商)為奇函數(shù)。
兩個函數(shù)y=f(u)和u=g(x)復合而成的函數(shù),只要其中有一個是偶函數(shù),那么該復合函數(shù)就是偶函數(shù);當兩個函數(shù)都是奇函數(shù)時,該復合函數(shù)是奇函數(shù)。
若函數(shù)f(x)的界說域關于原點對稱,則f(x)可以示意為f(x)=f(x)+f(-x)]+f(x)+f(-x)],該式的特點是:右端為一個奇函數(shù)和一個偶函數(shù)的和。
有關平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的歷程中,大量的、頻頻遇到的,而且是以林林總總的問題(包羅論證、盤算角、與距離等)中不能缺少的內(nèi)容,因此在主體幾何的總溫習中,首先應從解決“平行與垂直”的有關問題著手,通過較為基本問題,熟悉正義、定理的內(nèi)容和功效,通過對問題的剖析與歸納綜合,掌握立體幾何中解決問題的紀律--充實行使線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的頭腦,以提高邏輯頭腦能力和空間想象能力。
判斷兩個平面平行的方式:
(憑證界說--證實兩平面沒有公共點;
(判斷定理--證實一個平面內(nèi)的兩條相交直線都平行于另一個平面;
(證實兩平面同垂直于一條直線。
兩個平面平行的主要性子:
(由界說知:“兩平行平面沒有公共點”;
(由界說推得:“兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面”;
(兩個平面平行的性子定理:“若是兩個平行平面同時和第三個平面相交,那么它們的交線平行”;
(一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;
(夾在兩個平行平面間的平行線段相等;
(經(jīng)由平面外一點只有一個平面和已知平面平行。